

CORSO DI STAMPAGGIO AD INIEZIONE DEI MATERIALI TERMOPLASTICI

Programma ed elenco degli argomenti trattati durante il Corso.

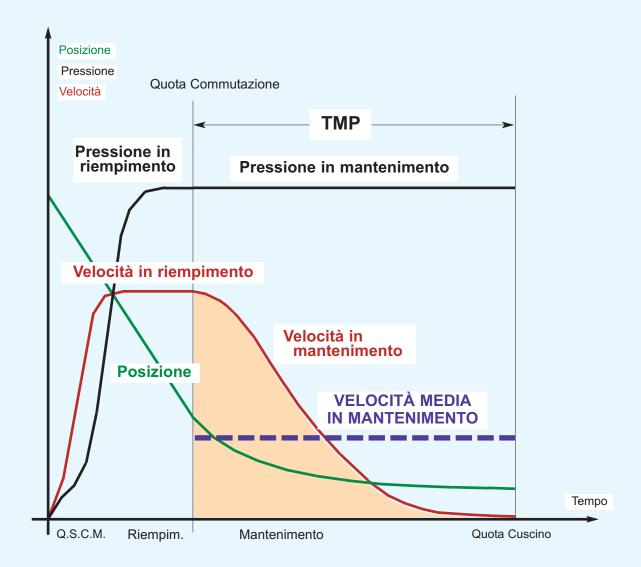
Il Corso è imperniato sulla qualità del prodotto stampato, che deve essere ottenuta in modo scientifico e nel tempo più breve possibile. Si inizia col mettere a fuoco i tre aspetti e le tre condizioni della qualità e si individuano le loro principali fonti. Si analizzano, poi, i quattro elementi dello stampaggio: materiale, pressa, stampo, programma stampo, individuando tutti i dati e tutte le variabili del processo indispensabili per impostare scientificamente le condizioni che garantiscono i migliori risultati.

Il Corso, di natura teorico-pratica, è rivolto a capi-turno, attrezzisti ed ha l'obiettivo di formare e addestrare i tecnici partendo dalla comprensione di tutti i principi presenti in un processo di stampaggio ad iniezione.

Il corso essendo di livello "base" è rivolto a personale appena introdotto in un'azienda di stampaggio o con qualche anno di esperienza.

Il corso, basandosi su solidi concetti scientifici, ha lo scopo di introdurre con le dovute modalità i principi fisici, chimici e alcune formule per poter ottimizzare le fasi di compionatura e start di una produzione.

Al Corso è benvenuta anche la presenza degli altri ruoli aziendali: progettisti e addetti alla prova stampo e tecnici della qualità.


Indice dei contenuti

Qualità
I materiali termoplastici
Stampo
Chiusura
Plastificazione
Iniezione
Grafici d'iniezione
Raffreddamento
Problematiche di stampaggio
Difetti sul pezzo e soluzioni
Dati tecnici sulla pressa
App per calcoli Melt Monitor

QUALITÀ

- Lo scopo dello stampaggio: qualità e profitto;
- Qualità: aspetti e condizioni;
- La fonte principale della qualità;
- La strategia nella ricerca della qualità;
- Le quattro aree della qualità;
- La qualità e i quattro elementi dello stampaggio.

LA FONTE PRINCIPALE DELLA QUALITÀ

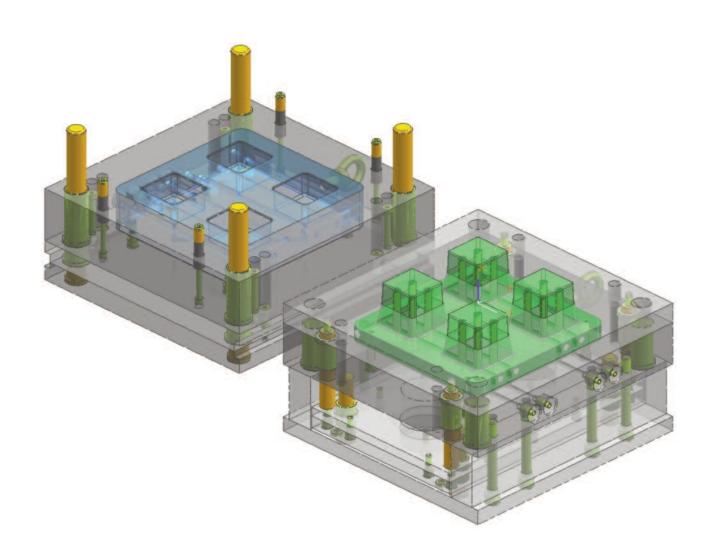
MATERIALI TERMOPLASTICI

- Materiali Amorfi e Cristallini;
- Le proprietà degli Amorfi e Cristallini;
- Riscaldamento e raffreddamento di Amorfi e Cristallini;
- Viti proprie per lo stampaggio dei termoplastici;
- La vite e il ciclo di stampaggio degli Amorfi;
- La vite e il ciclo di stampaggio dei Cristallini;
- Densità solida, Densità liquida e il loro utilizzo;
- Temperatura di stampaggio: il dato più importante;
- Temperatura stampo: determinazione e ottimizzazione;
- Temperatura estrazione pezzo e tempo di raffreddamento;
- Post pressione minima e massima del materiale;

1.3 TARELLA MATERIAL LAMOREI (dati tecnici principali)

- Velocità massima periferica del materiale e della vite;
- Velocità massima di avanzamento materiale in impronta;
- Velocità di cristallizzazione;

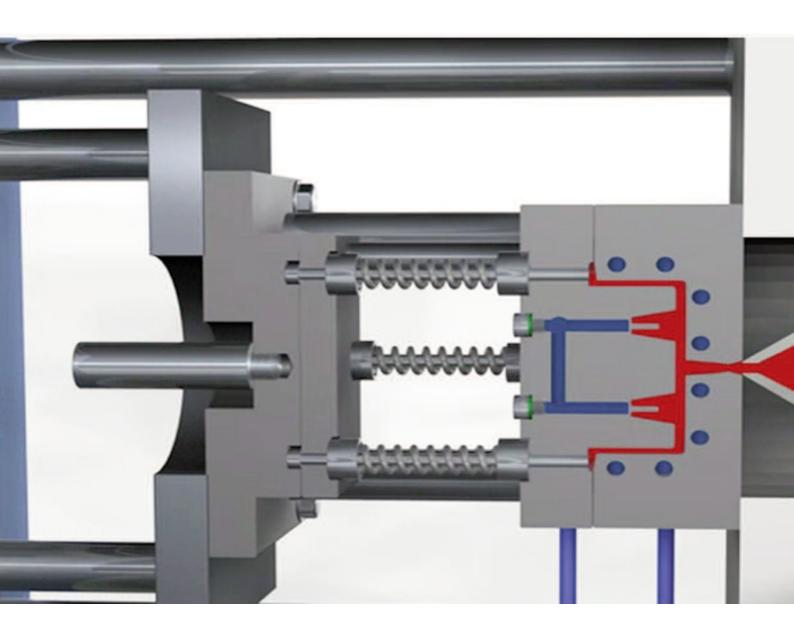
Esempio di tabella dati tecnici su Vademecum

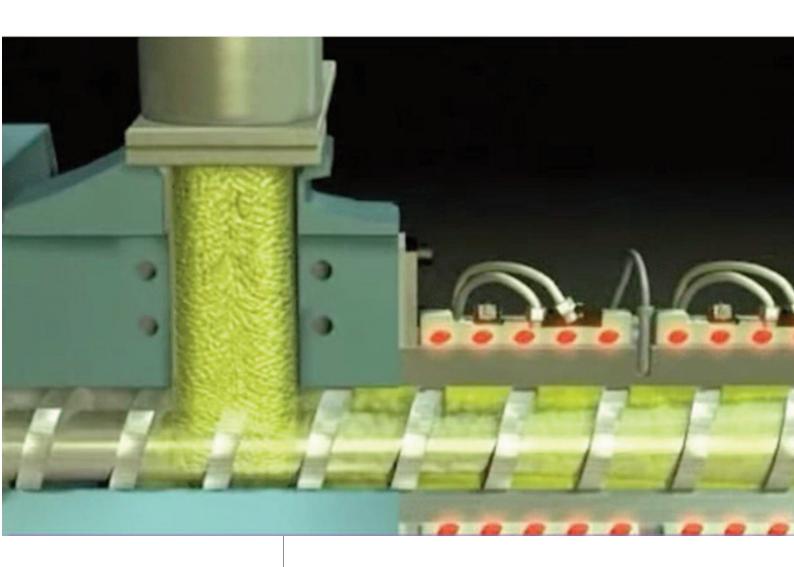

Codice	Mater.	Nome commerciale	sol.	Dens. liq. (gr/an²)	-Dliq	Rit. long. (%)	Rit. trsv. (%)	TA min. (°C)	TA cons. (°C)	TA max. (°C)	Tspo cons. (°C)	Tstr pzo (°C)
	ABS tutti tipi		1.04	0,88	15	0,4	0,7	240	240	250	70	95
	ABS rit. fiam.		1.04	0,88	15	0,4	0,7	220	230	240	70	95
	ABS visc. <<		1.04	0,88	15	0,4	0,7	200	210	220	70	95
	PS		1,06	0,91	14	0,5	0,3	210	220	230	40	80
	HI-PS		1,08	0,91	16	0,5	0,5	210	220	230	40	85
	SAN		1,07	0,8	25	0,5	0,5	220	240	270	70	85
	CA		1,28	1,02	20	0,6	0,7	190	220	240	40	80
	CAB		1,18	0,97	18	0,5	0,6	190	220	240	40	80
	CP		1,22	1,04	15	0,5	0,5	210	230	240	40	80
	PMMA		1,18	0,94	20	0,2	0,5	220	230	270	60	85
	PPO		1,06	0,94	11	0,6	8,0	250	280	300	80	14
	PPE		1,06	0,94	11	0,6	8,0	240	280	340	80	12
	PPS Ryton		1,98	1,78	10	0,25	0,55	305	330	340	<90	20
	PPS		1,3	1,1	15	0,7	0,7	320	330	350	60	20
	PC		1,2	0,97	19	0,6	0,6	280	290	320	80	10
	TMBRA PC		1,2	0,96	19	0,6	0,6	280	300	320	80	10
	PVCr		1,34	1,12	16	0,4	1,5	170	180	190	30	70
	PVCp		1,3	1,12	14	0,4	1,5	170	180	190	30	70
	PVCm		0,9	0,8	11	0,4	1,5	170	180	190	30	70

Mater.	PP1 min. (bar)	PP1 max. (bar)	Vper. max. (m/s)	Vper. reale (m/s)	Vel. av.fr. (cm/s)	Vel. crist. (s/mm)	D.Tp c%80 (°C)	Tingr. vite (°C)	Pr.es. Tem. (°C)	Pr.es. T.po (h)	Mac. max. (%)	Calore plast. (Kcal/Kg)	Tomv TAG (min)	Tr. Dan A
ABS tutti tipi	350	550	0,3	0,42	24	1:00	30	80	90	2	30	100	5	1,30
ABS rit. fiam.	350	550	0,3	0,42	22	583	30	70	90	2	30	100	6	1,30
ABS visc.<<	350	500	0,3	0,42	20	3 8 93	30	70	90	2	30	100	7	1,30
PS	400	600	0,6	0,84	24		30	30	70	2	30	100	8	1,29
HI-PS	350	550	0,5	0,7	22	878	30	80	70	2	30	100	8	1,20
SAN	400	550	0,3	0,42	22	##R	30	80	80	2	30	100	3,5	1,2
CA	350	550	0,3	0,42	20		30	80	70	2	20	108	8	1,0
CAB	350	550	0,3	0,42	20	(2)	30	80	70	2	20	108	8	1,10
СР	350	550	0,3	0,42	20	(19)	30	80	70	2	20	108	8	1,00
PMMA	350	550	0,3	0,42	25	150	30	90	75	3	20	95	6	1,0
PPO	350	550	0,3	0,42	20	750	30	90	100	2	20	140	12	0,8
PPE	600	770	0,3	0,42	20	**	30	90	100	2	20	150	10	1,5
PPS Ryton	400	600	0,5	0,7	15	150	30	150	150	5	20	160	60	0,5
PPS	300	700	0,5	0,7	22	(5)	30	110	150	6	20	155	60	1,6
PC	350	550	0,3	0,42	20	*	30	110	120	4	20	108	6	1,4
TMBRA PC	350	550	0,3	0,42	20	120	30	110	120	4	20	108	6	1,8
PVCr	500	700	0,2	0,42	15	120	30	30	4	2	10	50	30	1,30
PVCp	350	500	0,4	0,56	20		30	30	4	2	10	70	30	0,63
PVCm	350	500	0,4	0,56	18	18461	30	30			10	70	30	1,8

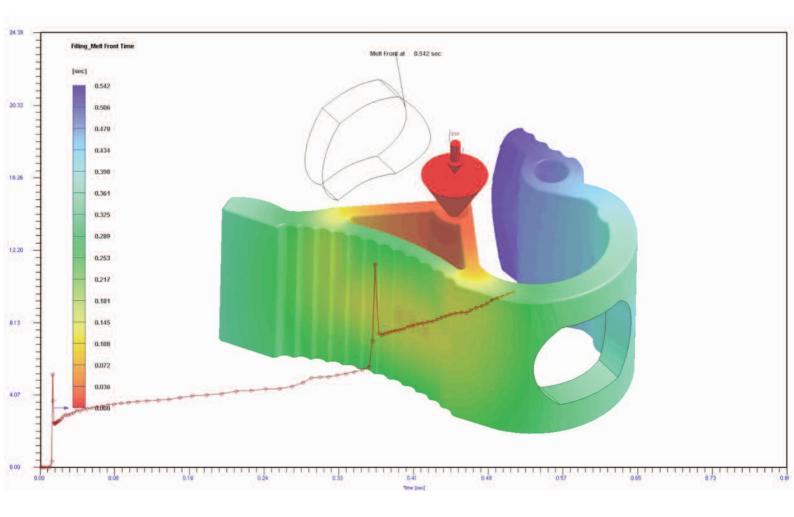
13

STAMPO


- Dimensioni e montaggio sulla pressa;
- I passaggi materiale dall'ugello alla figura;
- Il dimensionamento ottimale dei passaggi materiale;
- Canali: ramificazione equilibrata e forme sezioni;
- Il diametro minore carota: punto centrale tra ugello, carota e canali;
- Ugello: un nemico nascosto che limita la velocità d'iniezione;
- Ugello: dimensioni e problemi specifici di stampaggio;
- Gli sfoghi d'aria;
- La messa a punto dello stampo;
- I parametri di stampaggio che influenzano il ritiro.
- Come montare e smontare uno stampo
- Come collegare correttamente i circuiti di condizionamento
- Come controllare i flussi di condizionamento
- Come utilizzare correttamente il By-Pass delle centraline
- Camere calde: tipologie;
- Temperatura delle camere calde: come impostarle e come ottimizzarle;
- Tratto d'ingresso e collegamento con l'ugello;
- Come scegliere un ugello pressa in presenza di una camera calda
- Come regolare le temperature di un sistema multiugello

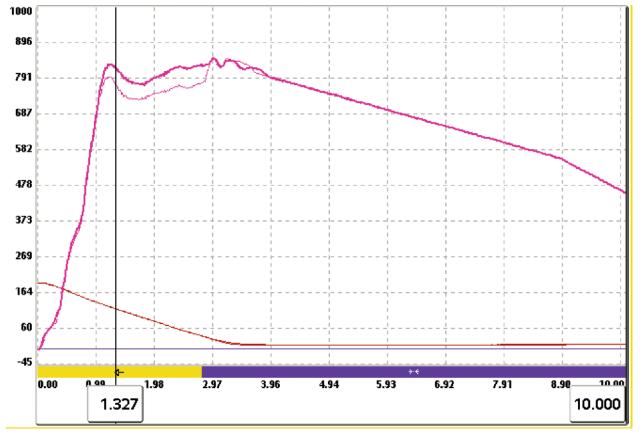

CHIUSURA

- Gruppi chiusura delle presse: ginocchiera, hydroblock, pistone, senza colonne e presse elettriche;
- Forza idraulica, meccanica ed elastica sullo stampo;
- Respiro stampo con programma inietto-compressione
- La corsa chiusura/apertura: chiusura-blocco-sblocco-apertura;
- Forza chiusura stampo: criterio di ottimizzazione;
- Forza chiusura stampo ottimale: influenza su qualità e profitto;
- Lettura della forza chiusura stampo sulle varie presse;
- Forza chiusura stampo: i dati da registrare per le produzioni successive;
- Parametri del gruppo chiusura ginocchiera, hydroblock, pistone;
- Quota Alta Pressione (ginocchiera): significato, ricerca e regolazione;
- Ottimizzazione dei parametri chiusura/apertura;
- Il ciclo salva-stampo e la sua ottimizzazione;
- Il ciclo estrattore centrale e l'impostazione delle sicurezze;
- Esempi pratici di ottimizzazione parametri chiusura/apertura.


PLASTIFICAZIONE

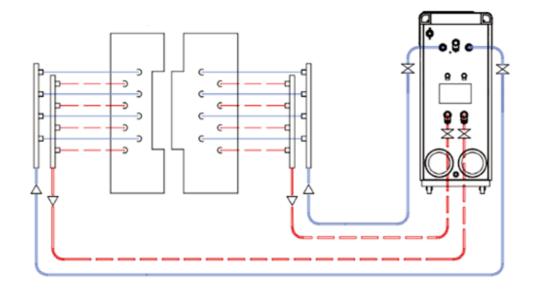
- Temperatura di stampaggio: valore e determinazione pratica sulla pressa;
- Carica materiale: definizione e ricerca con i dati di processo;
- Cuscino: scopo e criterio di ottimizzazione;
- Scelta ottimale della pressa
- Profilo di temperatura e relazione con la carica materiale;
- Velocità periferica vite e plastificazione del materiale;
- Energia termica trasmessa al materiale da motore e resistenze;
- Contropressione: definizione, scopo e criterio di ottimizzazione;
- Risucchio: definizione, scopo, impostazione e calcolo;
- I punti di ristagno;
- Plastificazione oraria, unitaria e volumetrica unitaria;
- Ottimizzazione pratica della temperatura di stampaggio;
- Ottimizzazione pratica della velocità rotazione vite;
- Ottimizzazione pratica della contropressione;
- Ottimizzazione pratica del risucchio;

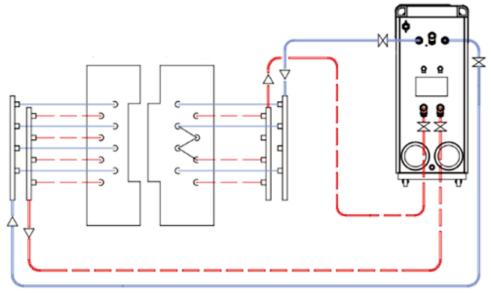

INIEZIONE


- Parametri d'iniezione: definizioni, ottimizzazione e sequenza d'impostazione;
- Verifica Temperatura di stampaggio e Temperatura stampo;
- Riempimento e mantenimento: controllo di velocità e controllo di pressione;
- Commutazione: significato sui parametri velocità e pressione;
- Quota commutazione: sua fondamentale importanza per lo stampaggio;
- Quota commutazione: calcolo e ottimizzazione pratica;
- Pressione e velocità in riempimento;
- Le aree di stampaggio e i loro limiti;
- La finestra di stampaggio: l'area scientifica;
- Rallentamento e arretramento della vite;
- Il picco di pressione e la forza di chiusura;
- Velocità d'iniezione e portata d'iniezione;
- Calcolo della portata massima d'iniezione;
- Profilo di velocità in impronta: criterio di calcolo;
- Mantenimento in pressione e la densità solida del pezzo;
- TMP e la regolazione della densità del pezzo;
- Mantenimento e impaccamento degli Amorfi in cavità stampo;
- TMP teorico per i Cristallini: formula di calcolo;
- TMP teorico per gli Amorfi: formula di calcolo;
- TMP economico e le prove di peso stampata;
- TMP e la chiusura delle sezioni sottili;
- Soluzioni per la chiusura sezioni sottili;

GRAFICI INIEZIONE DELLA PRESSA

- I grafici e la comprensione del processo di stampaggio;
- I grafici di posizione, pressione e velocità;
- Forme ottimali dei grafici e le condizioni ottimali dello stampaggio;
- Analisi dei grafici per la comprensione dei problemi di stampaggio;
- Uso dei grafici per la verifica delle variabili impostate;
- Uso dei grafici per la verifica dei dati della pressa;
- Esercitazioni pratiche sulla comprensione delle forme e irregolarità dei grafici.





RAFFREDDAMENTO

- Tempo di raffreddamento materiale reale e impostato;
- Raffreddamento dei materiali Amorfi e Cristallini;
- Formula del tempo di raffreddamento;
- Formula semplificata per l'uso pratico dell'attrezzista;
- Tempo di raffreddamento degli amorfi e le prove per la sua riduzione;
- Perché si dice che il tempo di raffreddamento dei cristallini non esiste?
- Tempo di raffreddamento e "conformatura" del pezzo;
- Tempo di raffreddamento e i problemi nascosti dello stampaggio;
- Tempo di raffreddamento oppure tempo di ritiro?;
- Tabella dei tempi di raffreddamento: una sorpresa;
- Esempi di calcolo pratico dei tempi di raffreddamento di Amorfi e Cristallini;
- Criteri per la riduzione del tempo di raffreddamento per Amorfi;
- La riduzione del tempo di raffreddamento per Cristallini con spessori enormi.
- Prova pratica: come varia il tempo di raffreddamento con collegamento in serie o parallelo

ESEMPIO DI COLLEGAMENTO CORRETTO E SBAGLIATO

Frigel S.p.a. Firenze

PROBLEMATICHE DI STAMPAGGIO

La "problematica di stampaggio" non è un "problema" ma un "insieme di problemi" relativi ad un aspetto del processo di stampaggio.

La problematica viene risolta solo quando si fa chiarezza su ogni suo aspetto e si risolvono tutti i problemi che ne impediscono una chiara e completa comprensione. Tra le principali problematiche sotto elencate, durante il Corso, si possono scegliere e analizzare quelle che interessano particolarmente la produzione e i difetti riscontrati in produzione.

Plastificazione

- Temperatura di stampaggio;
- Velocità periferica vite;
- Tempo di permanenza materiale nel cilindro;
- I punti di ristagno: cause e sintomi.

Iniezione

- Quota commutazione;
- Picco di pressione;
- Arretramento della vite;
- Linee di giunzione;
- Bruciature sulla linea di separazione stampo;
- Avvallamenti dovuti a variazione di spessore;
- Deformazioni dovute a spessori enormi;
- Risucchi per masse troppo calde;
- Risucchi al punto d'iniezione;
- Svergolamento e chiusura sezioni sottili;
- Riduzione eccessiva passaggio materiale;
- Iniezione in figure a spessori enormi.

Pressa

- La scelta della pressa ottimale;
- Forza di chiusura stampo;
- Respiro stampo e difetti sul pezzo
- Dimensioni minime e massime dell'ugello;
- Ugelli doppio-conici: il problema;
- Usura dell'anello: le cause e la formula;
- Corrosione della vite: le cause e la formula;
- Problema delle produzioni successive;
- Trasferimento programma stampo.

Estrattore

- Impostazione "anticipo estrattore";
- Impostazione velocità estrattore;
- Impostazione colpi multipli;
- Estrazione e impaccamento materiale.

Ritiro

- Ottimizzazione ritiro di stampaggio;
- Perdita di parallelismo e perpendicolarità;
- Bolle interne a superfici curve;
- Ottimizzazione post-Ritiro.

Raffreddamento

- Tempo di raffreddamento eccessivo;
- Temperatura di estrazione pezzo, e non altre;
- Impaccamento materiale in cavità stampo;
- Raffreddamento masse enormi della carota;
- Raffreddamento tira-carota;
- Impaccamento materiali in canali-carota;
- Conformatura del pezzo.

Stampo

- Determinazione del ritiro ottimale sullo stampo;
- Confronto tra il ritiro materiale e ritiro stampo;
- Identificazione criticità cavità stampo;
- Punti d'iniezione e influenza sulla pressione;
- D e L del punto d'iniezione;
- B, H e L del punto d'iniezione rettangolare;
- Forme del punto d'iniezione;
- Flusso e frangi-flusso;
- Regolazione del percorso del flusso materiale;
- Sezioni ottimali canali di alimentazione;
- Percorso ottimale canali;
- La lunghezza carota;
- Diametro maggiore carota e masse materiale;
- Diametro minore carota e spessore pezzo;
- Diametro minore carota e diametro ugello;
- Conicità carota;
- Tira-carota: dimensioni e posizione;
- Spessore estrazione pezzo;
- Chiusura sezioni sottili;
- Lunghezza del percorso di riempimento e ritiro;
- Messa a punto dello stampo: verifica pratica;
- Temperatura stampo e valore ottimale;
- Non uniformità della temperatura stampo.

DIFETTI SUL PEZZO

Il capitolo "Difetti e azioni correttive" del Vademecum può essere consultato solo dopo aver eseguito tutte le verifiche, interventi e ottimizzazioni elencate ai punti precedenti.

I difetti sono suddivisi in "Difetti funzionali" e "Difetti estetici". I primi sono gravi e comportano quasi sempre lo scarto del pezzo, mentre i secondi, ciò dipende dalla loro gravità. In questo capitolo, inoltre, vi sono i paragrafi:

- I parametri di stampaggio e i difetti sul pezzo;
- Lo stampo e i difetti sul pezzo;

dove, in relazione ad ogni parametro di stampaggio e dato dello stampo, sono riportati i corrispondenti difetti che possono essere causati sul pezzo.

Nelle sezioni Difetti funzionali e Difetti estetici, ogni difetto viene definito nella sua natura, sono elencate le sue possibili cause ed è fornito un elenco di azioni correttive suddiviso in 4 parti: parametri di stampaggio, stampo, pressa, materiale, ciascuna evidenziata con un colore diverso e con una sequenza progressiva tale da iniziare con le azioni correttive più semplici e immediate e, man mano, sempre più onerose come tipo di intervento e come tempi di realizzazione.

Esempio di una pagina del capitolo "Difetti e azioni correttive" del Vademecum

La degradazione chimica è causata da Temperatura di stampaggio troppo elevata; Tempo di permanenza del materiale nel cilindro oltre il massimo consentito; Punti di ristagno, angoli morti, usura, corrosione della vite, cilindro, valvola; Temperatura eccessiva in uno o più canali caldi. La temperatura di stampaggio supera il massimo consentito a - Verificare la temperatura del fuso con uno spurgo e con un pirometro; Ridurre la temperatura di stampaggio, se oltre il massimo consentito; Riverificare la temperatura effettiva del fuso; Ottimizzare la velocità di rotazione della vite: Ottimizzare il profilo di temperatura delle zone termiche del cilindro; Ridurre la contropressione; Verificare il funzionamento dei controlli termici delle zone termiche. g -Il tempo di permanenza nel cilindro supera il massimo consentito a - Se il tempo di permanenza supera di molto il massimo consentito scegliere un di amento vite inferiore; Se il tempo di permanenza supera di poco il massimo consentito, ridurre la velocità di rotazione vite o, se possibile, il tempo di ciclo; Ridurre la percentuale di macinato; Ridurre la velocità di rotazione della vite; Controllare la temperatura del canale caldo (se presente); Verificare il funzionamento del controllo termico del canale caldo. Le venature si notano dopo aver scaricato il cilindro a - Controllare gli elementi: cilindro, vite, valvole di non ritorno e superfici di tenuta nei riguardi delle "zone di ristagno";
 b - Controllare lo stato di usura della vite-cilindro, valvola; - Controllare lo stato dei granuli e la pulizia della tramoggia. Le venature da degradazione sono vicino al punto d'iniezione Ridurre la velocità d'iniezione, e usare il profilo lento-veloce; Verificare se esistono spigoli vivi nei canali di alimentazione;
 Controllare i canali caldi se presenti. Le venature da degradazione sono lontano dal punto d'iniezione a - Ridurre la velocità d'iniezione;
 b - Verificare la presenza di spigoli vivi nei canali di passaggio della massa: Verificare la presenza di spessori troppo sottili nei canali di alimentazione: d - Controllare lo stato di essicazione del granulato; e - Ridurre la percentuale di macinato; f - Impiegare materiali termicamente più stabili; - Impiegare materiali termicamente più stabili; g - Impiegare coloranti termicamente più stabili. 144

DATI TECNICI SULLA PRESSA

È di estrema utilità che sulla pressa, o nelle sue vicinanze, l'attrezzista possa rapidamente consultare la Tabelle delle presse e la Tabella dei materiali, per reperire i dati indispensabili per effettuare impostazioni, ottimizzazioni o interventi sul processo di stampaggio.

Nell'area sovrastante la consolle, inoltre, è importante riportare una targhetta contenente i dati più caratteristici della pressa, che servono per concludere rapidamente analisi che riguardano le problematiche dello stampaggio:

D	•••••	[mm]	Sez.		$[cm^2]$
L/D	•••••	[-]	Tipo		
Psi/Pi		[-]			
Vmax rot.		[g/min]	 [m/s]		
Vmax in.:		[cm/s]	 $[cm^3/s]$	s]	

VERIFICHE SULLA PRESSA

Quando si inizia ad usare i grafici d'iniezione e le formule, per comprendere meglio il processo di stampaggio e calcolarne i parametri, si scopre che "i conti non tornano" e spuntano le "sorprese". Sulla pressa, c'è qualcosa che non quadra e, quindi, si rendono necessarie verifiche, regolazioni o interventi. Il problema più grave e la lacuna più radicata, nel mondo dello stampaggio, è la quasi totale indifferenza ai grafici d'iniezione. Durante il Corso, si insiste e si ribadisce che, senza l'uso dei grafici, risulta impossibile:

- comprendere adeguatamente il processo di stampaggio;
- individuare e rimediare alle criticità dello stampo;
- ottimizzare i parametri del programma stampo;
- usufruire dei vantaggi che si potrebbero ottenere sulla qualità e sul profitto.

Le verifiche più importanti sono:

- Verifica della presenza e corretto funzionamento dei grafici d'iniezione;
- Verifica del controllo delle pressioni;
- Verifica del controllo delle velocità (portate);
- Verifica della massima velocità d'iniezione;
- Verifica della massima velocità rotazione vite;
- Verifica delle termocoppie del cilindro di plastificazione;
- Verifica della linearità del movimento spostatori (ginocchiera);
- Verifica del parallelismo dei piani della pressa;
- Verifica della lettura del trasduttore di forza chiusura.

TRASFERIMENTO PROGRAMMA STAMPO

Programma stampo: definito da stampo-materiale-pressa;

Trasferimento programma stampo da una pressa all'altra: i casi più comuni;

Parametri macchina e parametri specifici;

Dati pressa che modificano i parametri del programma stampo;

Modulo e formule di trasferimento del programma stampo.

Corsi presso la sede Cliente

Richiesta di un Corso

Per concordare contenuti e modalità di un Corso e ricevere un preventivo, contattare:

Via Sant'Antonio, 28 Brescia 25133 Tel. 377 5161732

E-mail diretta docente: adessa.luca@gmail.com E-mail ufficio: info@corsidistampaggio.com

www.corsidistampaggio.com www.softwarestampaggio.com LinkedIn: Luca Adessa

Documenti per la richiesta di finanziamenti per Corsi di formazione

Per le richieste di finanziamento di Corsi di formazione, siamo in grado di fornire:

- curriculum vitae del Docente;
- programma del Corso, previamente concordato;
- PDF dei supporti didattici forniti al Corso;
- altri documenti che attestano l'impostazione professionale del Corso.